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ABSTRACT: The structure of styrene−butadiene (SB) nano-
composites filled with industrial silica has been analyzed using
electron microscopy and small-angle X-ray scattering. The grafting
density per unit silica surface ρD3 was varied by adding graftable SB
molecules. By comparing the filler structures at fixed ρD3 (so-called
“twins”), a surprising match of the microstructures was evidenced.
Mechanical measurements show that ρD3 also sets the modulus: it is
then possible to tune the terminal relaxation time of nano-
composites via the chain length while leaving the modulus and
structure unchanged.

Polymer nanocomposites obtained by blending nano-
particles (NPs) with polymer chains have been recognized

to have superior thermomechanical, electrical, or optical
properties,1,2 which may be useless, if these properties cannot
be tuned. Some of them, namely, the rheology of filled melts,
depend critically on the structure and dispersion of the
nanoparticles. It is therefore appealing to control the structure
to tailor these properties.
In model nanocomposite systems, i.e., systems containing

well-defined colloidal NPs, control parameters for the structure
have been evidenced, like the filler volume fraction3 or the
process conditions.4,5 Large efforts have been devoted to
studies of chain structure6 and dynamics7 in model systems. In
more elaborate systems, adsorbed or grafted NPs have been
studied.8−10 Two additional parameters, the grafting density
and the ratio of the grafted-to-matrix chain mass, appear. The
dispersion of the NPs and the resulting rheology have been
found to depend on both,10−12 due to a conjunction of factors:
the dependence of polymer melt viscosity on chain mass
introduces a characteristic time separating a terminal (flow)
regime from a plateau modulus at high frequencies.13

Moreover, grafting chains to a filler skeleton induces a slowing
down of the dynamics.14,15 Finally, the filler contribution
depends strongly on the filler structure which may be dispersed,
aggregated, or a percolated network4 and is obviously triggered
by the interaction between filler particles, and thus grafting.
The detailed structure of the filler particles in industrial
nanocomposites has received only little attention,16−18

presumably due to a complex one-pot formulation in a mixer,
a high amount of disorder, and technical difficulties in analyzing
the structure. We have recently undertaken a systematic study
of the dispersion state of simplified uncross-linked industrial
nanocomposites formulated by melt mixing of styrene−
butadiene chains with silica of industrial origin, discarding
other common ingredients like those related to cross-linking
(cf. Supporting Information (SI)). These nanocomposites form
by breaking up of silica agglomerates due to the stress mediated
by the polymer in the mixer, followed by reaggregation. The
latter depends crucially on the details of the NP interactions
and is thus determined by the brush structure (see ref 15) and
the grafting. We have set up an original structural model based
on a quantitative transmission electron microscopy (TEM) and
synchrotron small-angle X-ray scattering (SAXS) analysis. Its
description for increasing silica volume fraction Φsi extends
from the primary silica NPs (of radius ≈10 nm) to NP
aggregates (of radius ≈40 nm, compacity ≈35%), up to
micrometer-long branches with typical lateral dimension of 150
nm.19 Furthermore, we have studied the effect of the fraction of
graftable matrix chains on the aggregate size.15 We could show
that the aggregate mass can be decreased by about a factor of 4
using grafting. This evolution saturates; i.e., for high enough
grafting fractions the structures are the same. The challenge
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with the data presented up to now is that such a quantitative
characterization has to be carried out for each chain mass, for
each fraction of graftable chains, and for each silica volume
fraction. Due to the chain mass dependence of the viscosity, it
is tempting to believe that the final filler structure (after
mixing) is determined by the chain mass. It is the ambition of
the present letter to show that this is not the case and propose a
unique structure-determining parameter for such industrial
nanocomposites.
Simplified industrial nanocomposites with precipitated silica

and SB chains of different mass (MSB = 40, 80, 140, and 280 kg
mol−1, all with polydispersity index below 1.1 given by size
exclusion chromatography) have been formulated in an internal
mixer. A fraction %D3 of the chains is endowed with a single
grafting function. Details on the formulation and grafting
efficiency are given in the SI. The nominal grafting density of
the polymer chains on the available silica surface reads
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where dSB = 0.94 g cm−3 is the density of the polymer; R0 =
8.55 nm and σ = 0.27 are the log-normal silica bead parameters;
and NA is the Avogadro number. Equation 1 gives the number
of grafting functions per unit NP surface calculated with the
average surface and volume deduced from the log-normal NP
size distribution. Note that some 80% of the NPs are located at
the surface of a typical aggregate (radius 50 nm, compacity
35%), implying that they offer a large part of their surface for
grafting due to the noncompact aggregate density. The nominal
grafting density is thus a reasonable estimate of the real one. In
our forthcoming paper,20 deviations between the nominal NP
grafting and the grafting on the aggregate surface have been
used to construct a physical model reproducing the size
dependence of aggregates. For a given filler surface area, the
grafting density ρD3 increases with the %D3 fraction and
decreases as the chain mass goes up, due to the obvious scarcity
of chain ends. In a forthcoming article,20 we will show that
higher chain masses at fixed matrix composition (50%D3) lead
to bigger aggregates, an effect opposite to higher grafting. The
latter two dependencies together suggest checking the
pertinence of the ρD3-parameter as a control parameter of
aggregate structure. We now focus on the impact of ρD3 on the
filler structure as seen by SAXS in the intermediate q-range.
SAXS experiments were performed on beamline ID2 (ESRF,
Grenoble, cf. SI). In the course of this project, more than 100
samples have been formulated, varying the silica volume
fraction (five values from Φsi = 0 to 20%), the chain mass (four
masses from 40 to 280 kg mol−1), and the matrix composition
(five fractions from 0 to 100%D3). For these samples, we have
calculated the grafting density ρD3 and identified couples with
ρD3 as close as possible. In some cases, e.g., a doubled mass
compensated by doubled grafting, the comparison may be
exact. The Φsi values determined by TGA are slightly scattered,
which is luckily without consequences because aggregate
structures depend weakly on Φsi.

19 In Table 1, the parameters
of the available ρD3-twin nanocomposite couples with ρD3
within ±2 × 10−3 nm−2 are reported. In Figure 1, two
comparisons (low and high Φsi) between intensities for twin
nanocomposites with ρD3 = 35 and 51 × 10−3 nm−2 are shown.
Others, from ρD3 = 0 to 71 × 10−3 nm−2, are given in the SI. At
low silica volume fraction (≈9%), the increase in chain mass
from 140 to 280 kg mol−1 is compensated by the increase in

%D3. ρD3 equals ≈35 × 10−3 nm−2 for both, and the intensities
superimpose in a satisfying manner over almost the entire q-
range.
A similar comparison is performed for a higher volume

fraction (≈19%), with 40 and 80 kg mol−1, leading to ρD3 ≈ 51
× 10−3 nm−2. Again the superposition of the intensities is
remarkable, suggesting a very similar filler structure on this
scale. However, to be more quantitative, one needs to compare
the differences between the intensities to some norm. We have
chosen the evolution of the intensities as a function of %D3 at
fixed mass for comparison because there the whole range from
widely different structures (i.e., typically a factor of 4 between
aggregation numbers) to identical ones is covered. The
assessment of the difference between two intensities I and Iref
normalized to their respective Φsi is then done by calculating
the following deviation integral DI
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where q is measured in Å−1. DI is constructed as the integral
over a square to define a positive distance between curves. In
Figure 2, two examples of the integrand (I/Iref − 1)2 are shown
as a function of q. The original intensities are shown in the

Table 1. ρD3 Twin Samples with Different Formulation
Parametersa

twin sample 1 twin sample 2

ρD3 MSB Φsi MSB Φsi

[10−3 nm−2] [kg mol−1] %D3 [% vol] [kg mol−1] %D3 [% vol]

0 140 0 16.7 40 0 20.4
0 140 0 8.6 280 0 9.6
16 140 25 16.8 280 50 19.4
35 140 25 8.6 280 50 9.5
51 40 25 18.9 80 50 19.5
71 140 50 8.4 280 100 9.5

aThe nominal grafting densities ρD3 of such samples are as close as
possible (within 2 × 10−3 nm−2, except for the last twin: ±4 × 10−3

nm−2).

Figure 1. Comparison of silica structure studied by SAXS in ρD3-twin
nanocomposites. Low Φsi: ρD3 = 37 × 10−3 nm−2, 140 kg mol−1, 25%
D3 vs ρD3 = 33 × 10−3 nm−2, 280 kg mol−1, 50%D3. High Φsi: ρD3 =
52 × 10−3 nm−2, 40 kg mol−1, 25%D3 vs ρD3 = 50 × 10−3 nm−2, 80 kg
mol−1, 50%D3. Arrows indicate the zones corresponding to different
structural levels.
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inset. The three curves correspond to 0%, 25%, and 100%D3
(140 kg mol−1, 9% silica) and evolve progressively toward the
limiting curve at 100%D3,15 which is taken as the reference
curve Iref in eq 2. The resulting integral between the limits
indicated in the graph gives 1.19 and 0.16, respectively. The
choice of the q limitsfixed for all samplesis explained in the
SI. The narrowing of the deviation at intermediate angles in the
inset is thus translated correctly first in the curves shown in
Figure 2 and then into a value corresponding to the area under
that curve. Obviously, strictly identical I(q) and Iref(q) yield the
minimum value of DI, which is zero for 100%D3. Note that
these results are robust: we have checked that integrating over
dq instead of d log(q) shifts the numerical values but does not
affect the results.
Equation 2 thus gives us a tool to compare deviations

between intensity curves in a quantitative manner. To explore
the full range, we have calculated integral values DI for several
families of curves of varying matrix composition %D3 from 0 to
100%: at 40 (Φsi = 20%), 80 (10%; 20%), 140 (10%; 20%), and
280 kg mol−1 (10%). We have always chosen Iref to be at 100%
D3. The comparison between the DI values of these families
and the ρD3 twin samples given in Table 1 (ρD3 = 0−71 × 10−3

nm−2) is shown in Figure 3. Within a family, the fact that the
intensity curves approach as %D3 increases is reflected by the
decrease of the integral DI to zero. The DI values of all ρD3
twins obtained by taking one of them as Iref are shown as solid
lines at the bottom of the plot. These DI values are clearly
considerably smaller than all others, confirming now
quantitatively that the resemblance of the graphs in Figure 1
is not only a visual effect. Finally, it may be noted that the
similarity observed here is fundamentally different from the
saturation effect described in ref 15, where we have shown that
the structure of samples does not evolve above a critical grafting
value. In the present letter, the similarity holds for arbitrary
grafting densities of twins. Note that due to the similar size of
aggregates, a possible deviation between nominal and real
grafting density caused by inaccessible inner NPs would be very
similar for each twin.
As a next step, we have compared filler structures by TEM.

The pictures of the low-Φsi twin samples (35 × 10−3 nm−2)
compared in Figure 1 are confronted in Figures 4(a) and (b). If

it were not for the slight difference in luminosity, one could
think the two pictures were parts of one bigger one. The
agreement is striking and confirms the findings of the SAXS
study: samples of identical grafting density ρD3 but with highly
different chain mass and thus mixing viscosity display the same
filler structure (see SI for another example). For comparison, at
low ρD3, the structure is significantly different, as can be seen in
Figure 4(c).
One of the fundamental questions of nanocomposites is to

understand and control the influence of the structure on the
mechanical properties. We have used DMA (see SI) to measure
the storage and loss moduli of twins (cf. Figure 5). The result
for the ρD3 twins with (35 ± 2) × 10−3 nm−2 (cf. Table 1)
measured at 10 Hz is shown in the inset of Figure 5. The curves
have the classical appearance of moduli, with a maximum due
to the segmental relaxation in G″(T) and a glassy plateau at low
temperatures. Above the glass transition, the viscoelastic
(rubbery) plateau is found. For comparison with previous
shear experiments (150 Hz) at 50 °C, in which this plateau
appeared at high frequencies,15,19 we have used the time−
temperature superposition principle13 and report correspond-
ing DMA moduli at 2 °C and 10 Hz in Figure 5, for the samples
in Table 1. Clearly, the plateau moduli are identical within 10%
for each twin. At 10% vol silica, they are close for all samples,
whereas at 20% vol a strong decrease is observed with
increasing ρD3, proving the tunability of the performance at
high filler fraction. Twins have thus an identical structure and
storage plateau modulus but display different dynamics in the
terminal regime, due to the widely different chain masses. For
the twins at ρD3 = 35 × 10−3 nm−2, we have checked that their
characteristic time evolves from 2.4 to 23.1 s, in quantitative
agreement with changes in mass by a factor of 2 inducing a
change in time by 23.4 = 10.5.21

In conclusion, we have proposed robust evidence for the
existence of a unique control parameter, the grafting density
ρD3, in simplified industrial nanocomposites. Note that in
model systems similar morphology-determining parameters
have been identified.22 This parameter determines the filler
structure as evidenced by SAXS and TEM on twins, defined by
different mass and grafting, but identical ρD3. The physical
mechanism relating grafting density and structure formation in
the mixer may be considered. Given the generally high grafting

Figure 2. Quantification of the deviation between filler structures
using the intensity ratio for 0%, 25%, and 100%D3 (140 kg mol−1,
≈9% vol silica). The integral DI calculated as the shaded area
decreases as the SAXS intensities shown in the inset become closer to
the 100%D3 data.

Figure 3. DI measuring the deviation between filler structures, for
families of curves as indicated in the legend, vs %D3. Dotted lines are a
guide to the eye. The DI values of the ρD3 twins given in Table 1 are
plotted as black lines at the bottom. They range from 0.021 to 0.155,
the highest one being the 71 × 10−3 nm−2 twin.
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densities, layers are necessarily dense with little matrix chain
interpenetration, in particular as matrix and graft chain masses
are identical (“dry” layer). Such layers favor steric stabilization
of filler aggregates. During mixing, aggregates break up and
reagglomerate if this is not impeded by dense enough grafting
at their surface, which is size dependent. Higher grafting
densities thus lead to smaller objects. An empirical model of
size as a function of grafting density will be proposed in the
future. In this respect, the mass of the grafts is irrelevant as it
affects only the layer thickness (which is already considerable
with 40 kg mol−1), not the layer density, thus conferring
identical structures to twins. The mechanical properties of such
twins are characterized by an identical viscoelastic plateau and
thus reinforcement. Moreover, the latter is tunable with ρD3 at
20% vol silica. Finally, it is possible to control the onset of the
terminal flow behavior of twin samples over a wide frequency
range by modifying the chain mass at fixed ρD3. It is believed
that both the evidence for structure control and the strategy of
structural analysis reported here for highly disordered systems
will be of relevance for a general class of disordered materials,
including both industrial and model nanocomposites.
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